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Abstract 
 
This paper is concerned with inelastic and large deformation analyses of plane trusses. The effects of member 
buckling and yielding on ultimate strengths of plane trusses are investigated with large deformation of 
members. Material nonlinearity is considered by introducing plastic hinge concept and plastic hinges are 
assumed to be formed where the cross-sectional forces satisfy the plasticity criterion which is expressed by 
LRFD equations. On the other hand, equilibrium equations are computed using the deformed shape of the 
plane truss for accounting large deformation effects. In order to reveal the accuracy and efficiency of the 
analytical method used in the study, various numerical examples from the literature are examined accounting 
both large deformation and material nonlinearity effects.  
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1. Introduction  
 
Truss structures are one of the most efficient structural systems that are used in today’s design. Trusses can 
sustain considerable loads and behave favorably by using a small amount of materials. Since the beginning of 
the commercial use, truss systems have been increasingly popular, especially in large open areas with few or 
no intermediate supports as shown in Figure 1. Over the years, they have gained more attention for their 
pleasing appearance, light weight, easy fabrication and rapid erection. Thousands of successful structural 
truss applications now exist all over the world covering stadiums, public halls, exhibition centers, airplane 
hangers and many other engineering structures. Also, the interest in the analysis of this type of structures lies 
both in the fact that their use is expanding beyond the traditional one, such as electric towers, windmills, 
cranes and suspension bridges. 
 
 
 

     
Figure 1. Truss Structures 



                                                                         Inelastic and Large Deformation Analyses of Plane Trusses           

 

176 

Plane truss systems with pinned joints are frequently used in structural engineering applications whose 
ultimate loading capacity cannot be solely determined from conventional linear analysis. This problem leads 
an increasing attention to the nonlinear analysis of truss structures whose individual elements can only resist 
axial forces. In recent years, there is an increasing awareness of the quality and capability of analysis 
techniques that explicitly consider both material nonlinearity and large deformation effects for estimating the 
structural response up to maximum load limit states. Some of the studies carried out in this field consider 
only a nonlinear behavior due to large deformations, while material law is assumed to be linearly elastic [1, 
2]. In the analysis of truss structures with pinned joints it is very often necessary to consider loading 
conditions for which the deflections are large enough to cause significant changes in the geometry of the 
structure so that the equations of equilibrium must be formulated for the deformed configuration. The 
solution for deflections and stresses is generally presented as step-by-step matrix method based on load 
increments which are particularly suitable for computer programming [3]. In addition, large deformation 
analysis provides eigenvalue equations and global structural stability can also be checked in each step. The 
theoretical results of the large deformation analysis are compared with the exact analytical results in many 
studies [3, 4]. In comparison with the large amount of research on the large deformation behaviors of plane 
trusses, relatively little work has been conducted on the effects of member buckling and yielding [5]. The 
different types of inelastic analysis models may be generalized into two main groups as elastic – plastic hinge 
and plastic zone or distributed plasticity [6]. This generalization is based on the degree of refinement in 
representation of yielding effects. The elastic – plastic hinge model is the simplest approach while the plastic 
zone model exhibits the greatest refinement [7]. However, in recent years elastic – plastic hinge model 
become popular since it requires less effort and is less costly than plastic zone model. Elastic – plastic hinge 
analysis does not represent the distributed plasticity within individual members of the structure but makes use 
of concentrated plastic hinges to approximate the inelastic behavior of the members in a structure. Thus, this 
method is computationally more efficient and economical than the plastic zone approach.  
 
In the present study, inelastic and large deformation analyses of plane truss structures are investigated and 
constitutive laws that consider these effects are outlined for a truss element. In order to account large 
deformation in analysis procedure large deformation matrix is formed and the equations of equilibrium are 
formulated with the deformed configuration. Besides, elastic – plastic hinge assumption is used for 
formulation of inelastic modeling.  Elastic – plastic hinge modeling method reduces the complexity of the 
problem, and minimizes the time required in the solution procedure. In numerical examples, ultimate load 
capacities of plane truss structures under sustained loading conditions are calculated using the concepts of 
member buckling and yielding with accounting large deformation of the structures. The ultimate responses 
and structural behavior of several plane trusses from the literature are examined for determining the accuracy 
of the proposed method in the study. 
 
2. Large Deformation of Truss Members in Local Coordinates 
 
Numerous papers and many structural analysis programs for digital computers are available for analyzing 
general types of planar truss structures using conventional linear analysis methods [8, 9]. These methods 
generally follow the routine for calculating the member stresses and joint deflections in order to check the 
design code safety limits for complex structures. In last decades, these conventional methods are improved to 
be employed efficiently for various engineering applications with the developments in computer technology 
and in computing methods [10, 11]. Additionally, it becomes possible to account large deformations and 
structural instabilities in the structural analysis procedure. In linear small deformation analysis, equilibrium is 
computed for the undeformed, original configuration of the truss. On the other hand, in large deformation 
analysis, equilibrium is computed using the deformed shape of the truss. 

 

 
Figure 2. Truss Member: (a) Global and Local Axes, (b) Basic Forces and Displacements, (c) Local Forces 

and Displacements 
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In order to calculate large deformation effects in structural analysis; a truss member is selected and the joints 
of the member ends are termed as a and b, respectively. Figure 2 shows the truss member and its relations 
with the local and global axes. In large deformation analysis, we assume that the member stiffness matrix 
may be separated into an elastic part [kE] plus a geometric part [kG] which accounts the effects of large 
deformation. The first matrix is also known as the conventional elastic stiffness matrix [kE] and it can 
commonly be recognized from structural analysis textbooks [12].  The elastic stiffness matrix [kE] is simply 
given in local coordinates with equation (1) [12]:   
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The second matrix which accounts the large deformation effects is derived using the deformed shape of the 
truss member. If we define an angle θ as the counter clockwise inclination of the deformed bar with respect 
to global coordinate X and write the relation between local forces and basic forces from Figure 2, we can 
easily obtain the relationship as given with the equation (2). 
 

   TT
4321 sinθcosθsinθcosθ Tqqqq              (2) 

 
The angle θ may be determined from the geometry of the deformed shape using the local displacements as in 
equation (3) and equation (4): 
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where L0 is the original length of the bar and L is the deformed length of the bar. 
 
If we substitute the expressions for sinθ and cosθ into the equilibrium equation (2) with writing the 
expressions in matrix form, we can obtain the equation (5) where we use the approximation that L0 is equal to 
L. 
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If the bar deforms only along its original direction, then u2=u4=0, u3–u1=Δ, and LEAΔT   or 

  3113 qqLuuA ET   can easily be determined. Therefore, the vector T0T0T , in 

equation (2) can be calculated from the elastic stiffness matrix, and the equation (5) may be formed as 
equation (6): 
 

 















































1010

0000

1010

0000

L

T

0000

0101

0000

0101

L

EA
k                     (6) 

 
where the first matrix is the elastic stiffness matrix [kE] and the second matrix is the large deformation matrix 
[kG]. 
 
3. Inelastic Modeling of Truss Members 
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In this study, inelastic behavior of plane truss structures is modeled by using elastic–plastic hinge concept. It 
is assumed that inelasticity in truss members is concentrated at plastic hinges. The elastic–plastic hinge 
analysis is a series of analysis in which a plastic hinge is formed at the location of maximum axial force. The 
formation of the plastic hinge results in a reduction of one degree of indeterminacy from the structure. If the 
structure is determinate, it becomes unstable and then the ultimate load is obtained. If the structure is 
indeterminate, it is equivalent to a new and simpler structure in which a real hinge is used to replace the 
plastic hinge and a constant plastic force is applied at the location. Next, another analysis is performed on the 
new structure. The new plastic hinge can be located and a newer structure can be obtained. This process is 
performed until a sufficient number of plastic hinges are formed or buckling occurs and the original structure 
is transformed into a failure mechanism. 
 
The inelastic analysis has several benefits over the elastic analysis because one of the important properties of 
steel, ductility is fully utilized. Plastification of steel is the process of yielding of steel fibers causing the 
change in stress distribution on a cross section as the axial force increased. Furthermore, the sequence of 
formation of plastic hinges, the overstrength factor associated with the formation of each plastic hinge, and 
member force distributions in the truss structure between each plastic hinge formation and the collapse load 
of the structure is provided.  
 
3.1 Ultimate Strength of Truss Members 
 
In this study, since LRFD is a generally known and frequently used standard in the steel structures, the 
ultimate strength of a truss member is determined by the LRFD equations [13]. In the analysis process, if the 
axial force of the member is tension, the ultimate strength is provided with equation (7) [13]. 
 

AF P ytu                              (7) 

 
where Fy is specified minimum yield stress of steel, t  is resistance factor for tension, A is cross sectional 

area. 
It is generally more complicated to analyze when the axial force in the member is compression. If the axial 
force is compression, the slenderness of the section which is given in equation (8) becomes a key factor and 
ultimate compression force is calculated as given in equation (9) or in equation (10) [13].  
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where Fy is specified minimum yield stress of steel, Q is reduction factor for local buckling, A is gross cross 
sectional area, c  is resistance factor for compression, L is unbraced length, rs is radius of gyration about the 

plane of buckling, λc is slenderness parameter, K is effective length factor and E is modulus of elasticity. 
 
4. Numerical Examples 
 
In this study, a practical incremental method which is straightforward in concept and implementation is used 
in the analysis in order to investigate inelastic and large deformation analyses of planar truss structures. Since 
effects of member buckling and yielding on ultimate strengths are accounted using LRFD equations and large 
deformation analysis is based on large deformation matrix, the validity and computational efficiency of the 
results are examined with the numerical examples which can be followed from the literature. In all numerical 
examples, the direction of the force is accounted as positive and the load–deflection curves obtained with 
respect to this assumption. 
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4.1 Three–Element Truss 
 
A two–dimensional three–element truss which is generally used in basic engineering problems is subjected to 
a vertical load at point A and the geometry of the three–element truss is shown in Figure 3. In the reference 
study, W14×82 steel section is used for all members of the plane truss system and the stress–strain 
relationship is assumed to be elastic–perfectly plastic accounting yield stress 250 MPa and elastic modulus 
200000 MPa [14]. In order to investigate the efficiency of the analysis method, results from the proposed and 
reference analysis are compared. 

 

 
Figure 3. Three-Element Truss 

 
The load–vertical displacement result of the proposed analysis is shown in Figure 4. In this study, material 
nonlinearity is modeled by using LRFD equations and elastic–plastic hinge assumption while the reference 
study modeled material nonlinearity using Column Research Council tangent modulus equations and 
calculated gradual changes of the stiffness using the advanced analysis method [14].  
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Figure 4. Load–Vertical Displacement of Three-Element Truss 

 
This study and the reference study calculate the ultimate loads of 7339 kN and 7365 kN, respectively [14]. 
The difference in the ultimate loads between two studies is less than 0.3%. In order to show the analysis 
practice, each member failure steps are summarized in Table 1. 

 
Table 1. Member Failure Loads of Three–Element Truss 

 This Study Reference Study [14] 
1st Failure  2nd Failure 1st Failure  2nd Failure 

Load (P) 
4563 kN  

(Yielding at  
Member 2) 

7339 kN 
(Yielding at 

Members 1,3) 

4557 kN 
(Yielding at  
Member 2) 

7365 kN 
(Yielding at  

Members 1,3) 
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4.2 Truss with Double Braced Panel 
 
A plane truss with double braced panel is subjected to a horizontal concentrated load at point A and given in 
Figure 5. W14×82 is used for all members and the stress–strain relationship is assumed to be elastic–
perfectly plastic with yield stress of 250 MPa and elastic modulus of 200000 MPa [14].  

 

 
 

Figure 5. Truss with Double Braced Panel 
 

The load–horizontal displacement result from the proposed analysis is given in Figure 6 and beyond this 
point displacement values increases abruptly that indicates system failure.  
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Figure 6. Load–Horizontal Displacement of Truss with Double Braced Panel 

 
The member failure loads of the proposed and the reference analysis are given in Table 2 [14].  

 
Table 2. Member Failure Loads of Truss with Double Braced Panel 

 This study Reference Study [14] 
1st Failure  2nd Failure 1st Failure  2nd Failure 

Load (P) 
3418 kN  

(Buckling at 
Member 4) 

3751 kN 
(Buckling at 
Member 2) 

3418 kN  
(Buckling at 
Member 4) 

3751 kN 
(Buckling at 
Member 2) 

 
4.3  Pratt Truss 
 
The Pratt shape truss is a well-known type of truss structure which was patented by two Boston railway 
engineers [15]. Pratt truss is generally used for medium spans and this type of truss structure remained 
popular even as wood gave way to iron, and even still as iron gave way to steel. In this study, a type of Pratt 
steel truss which was used by the reference study is investigated in order to check the validity of the proposed 
analysis method [16]. The geometry and loading of the Pratt truss is given with Figure 7. The Pratt truss has 
an advantage that the diagonals except end posts are all in tension for uniform loads at the joints of the lower 
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chords. A square structural tube of 10x10x5/8 for the upper chords and vertical members and W10×49 
section for lower chords and diagonals are used in the reference study [16]. Also, A46 steel is used for 
compression members and A36 steel is used for tension members, respectively [16].  

 

 
Figure 7. Pratt Truss  

 
The load–horizontal displacement result from the proposed analysis is given in Figure 8. 
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Figure 8. Load – Vertical Displacement of Pratt Truss  

 
The member failure loads of the proposed and the reference analysis are given in Table 3 [15].  
 

Table 3. Member Failure Loads of Pratt Truss 
 This study Reference Study [15] 

Failure  Failure  

Load (P) 
 187 kN 

(Buckling at 
Member 12, 17)  

 191 kN  
(Buckling at    

Member 12, 17) 
 

4.4 Arch Truss 
 
An arch truss which was analyzed in the reference study is shown in Figure 9. In order to check the validity 
of the proposed analysis method of the current study, all the joints are assumed to be pinned and only the in-
plane behavior is considered as in the reference study [17]. 
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Figure 9. Arch Truss 
 

For ease of modeling, the coordinates of the joints as well as member size making up the truss are tabulated 
in Table 4 and Table 5. The modulus of elasticity for the material is taken as 7.03 x 105 kg/cm2 and the cross 
section of all members is solid circular [17].  
 

Table 4. Coordinates of Arch Truss 
Node Number X Coordinate (cm) Z Coordinate (cm) 

1,19 ± 3429 0 
2,18 ± 3048 50.65 
3,17 ± 2667 34.75 
4,16 ± 2286 83.82 
5,15 ± 1905 65.30 
6,14 ± 1524 110.85 
7,13 ± 1143 87.99 
8,12 ± 762 128.50 
9,11 ± 381 100.05 
10 0 134.60 

 
Table 5. Cross Sectional Area of Members 

Member Number Cross Sectional Area (cm2) 
1 – 10, 35 51.61 

11, 12 64.52 
13 – 16 83.87 
17, 18 96.77 
19 – 22 103.23 
23, 24 161.29 
25, 26 193.55 
27, 28 258.06 
29 – 32 290.32 
33, 34 309.68 

 
 

The load–vertical displacement curve of the arch truss is given in Figure 10.  
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Figure 10. Load–Vertical Displacement of Arch Truss  

 

The ultimate load capacity of the analysis results of this study and reference study is given in Table 6 [17].  
 

Table 6. Member Failure Loads of Arch Truss 
 This study Reference Study [17] 

Failure  Failure  

Load (P) 
268 kN  

(Buckling at 
Member 11, 12) 

267 kN  
( - ) 

5. Conclusion 
 
Following the advances with the computer–based analysis technique, structural analysis is tending towards 
more on the overall system response and less on individual member response. Inelastic and large deformation 
analyses of planar trusses are foremost analyze methods that incorporate the aspects of engineering involving 
mechanics, material behavior and computing.  
 
In this study, the effects of member buckling and yielding on ultimate strengths of planar trusses are 
investigated accounting large deformation effects. The load–displacement relationship comprising the key 
factors influencing plane truss behavior is described. The concluding remarks may be outlined as follows: 
 
1. Practical methods for inelastic and large deformation analyses of plane truss structures are outlined. 
2. The material nonlinearity is implemented by using LRFD equations and the deformed shape of the planar 
trusses is considered in the structural analysis by accounting large deformation effects.  
3. Numerical examples have provided similar results with the previous studies from the literature and also 
showed the ease and convenience of the proposed analysis method. 
4. When it is compared with the linear elastic analysis methods, inelastic and large deformation analyses of 
planar trusses provide more information such as the locations and sequences of formation of plastic hinges, 
inelastic redistribution of internal forces, failure mechanism and over strength factor of the structural system. 
5. This study provides a structural analysis approach which is consistent with the general concepts of the 
performance based–design. The analyses described in the study are user–friendly for computer–based 
analysis procedures. 
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