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ABSTRACT 
 
The main purpose of this paper is to present genetic algorithms as a viable alternative optimization technique 
and introduce their elements. Also the efficiency and ease of application of this technique are demonstrated 
by employing an illustrative example. 
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GENETİK ALGORİTMALAR: BİR OPTİMİZASYON TEKNİĞİ 
 
ÖZET 
 
Bu makalenin asıl amacı genetik algoritmaların diğer optimizasyon tekniklerine alternatif bir metod olduğunu 
ortaya koymaktır. Bu çalışmayla; genetik algoritma elemanlarının tanıtımı, ayrıca kullanımlarının kolaylığı 
ve uygunluğu bir örnek üzerinde gösterilmiştir.   
 
Anahtar kelimeler : Genetik algoritmalar, Optimizasyon 
 
1. INTRODUCTION 
 
The development of faster computer has given chance for more robust and efficient optimization methods. 
One of these robust methods is genetic algorithm, which has gained recognition as a general problem solving 
technique in many applications such as mathematics, engineering, medicine, and political science [1]. 
Genetic algorithms have received a rapidly growing interest in the community of combinatorial optimization 
dealing with problems characterized by a finite number of feasible solutions. Genetic algorithms are guided 
random search techniques. They are parameter search procedures based on the idea of natural selection and 
genetics [1]. They use objective function information instead of derivatives as in gradient-based methods. 
Numerical search techniques are good at exploitation but not exploration of the parameter space. They focus 
on area around the current design point, using local gradient calculations to move to a better design. Since 
there is no exploration for all regions of parameter space, they can easily be trapped in local optima [2]. 
Genetic algorithms are a class of general purpose algorithm that can make a remarkable balance between 
exploration and exploitation of the search space [3]. 
 
2. THE STRUCTURE OF GENETIC ALGORITHMS 
 
Genetic algorithms were first proposed by Holland [4] and extended further by De Jong [5] and Goldberg [1]. 
Goldberg and De Jong have made significant advances in this field. Holland’s genetic algorithm is a method 
for moving from one population of chromosomes to a new population by using a kind of natural selection 
together with genetic-inspired operators of crossover, mutation, and inversion [6]. 
 
Genetic algorithms are efficient search techniques involving a structured yet randomized information 
exchange resulting in a survival of the fittest among a population of string structure [7]. Genetic algorithms 
maintain a population of encoded solutions, and guide the population towards the optimum solution [1].  
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Thus, they search the space of possible individuals (strings) and seek to find high-fitness strings. Viewing the 
genetic algorithms as optimization techniques, they belong to the class of zero-order optimization methods 
[8] and [9]. The description of a simple genetic algorithm is outlined in Figure 1. 
 
An initial population is chosen randomly in the beginning and fitness of initial population members is 
evaluated. Then an iterative process starts until the termination criteria have been satisfied. After the 
evaluation of each individual fitness in the population, the genetic operators, selection, crossover and 
mutation, are applied to produce a new generation. Other genetic operators are applied as needed. The newly 
created individuals replace existing generation and re-evaluation is started for fitness of new individuals. The 
loop is repeated until an acceptable solution is found. Genetic algorithms differ from traditional 
searchtechniques in the following ways [1]: 

 
Figure 1  Flow chart for a simple genetic algorithms. 

 
-Genetic algorithms work with a coding of design variables and not the design variables themselves. 
-Genetic algorithms use objective function or fitness function information. No derivatives are necessary as in 
more traditional optimization methods. 
-Genetic algorithms search from a set of points not a single point. 
-Genetic algorithms gather information from current search points and direct them to subsequent search. 
-Genetic algorithms can be used with discrete, integer, continuous, or a mix of these three design variables. 
The essential aspects of genetic algorithms are discussed in the following. 
 
2.1 Coding 
 
A genetic algorithm’s data structure consists of one or more “chromosomes”. A chromosome is typically a 
string of bits. Binary coding is generally used, although other coding schemes have been used such as 
floating point coding. For more information about other coding possibilities, interested reader may refer to 
[14]. The success of a genetic algorithm depends on the design of suitable representation (coding) of the 
problem. This includes the design of representation of chromosome and fitness function, which determines 
how well a program is able to solve the problem. Encoding of the design variables as chromosome, binary 
digits, is developed for this study. The number of digits in the binary string, l , is estimated from the 
following relationship [10]: 
 

1])[(2 +−≥ εlowerupperl XX  (1) 
 
where l  is the string length and lowerX and upperX are the lower and upper bounds of variable, X . The 
physical value of design variable, X , can be computed from the following relationship [11]: 
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where d represents the decimal value of string for the design variable which is obtained using base-2 form.  
 
2.2 Fitness Function 
 
One of the most crucial aspects of genetic algorithm is the fitness function. The fitness function provides a 
measure of performance of an individual, which is used to bias the selection process in favor of the most fit 
members of the current population. Therefore, the fittest members of the population should have the highest 
fitness, while the weakest members should exhibit relatively low fitness. If the objective is to maximize a 
function, )(XF , the fitness value may be calculated directly from the objective function, Eq. (3). However, 
when faced with minimization of a function a conversion to fitness function form, Eq. (4), is required. In case 
of constrained optimization problems, fitness function should be transformed into an unconstrained 
optimization problem by penalizing the objective function value to ensure that the solutions meet any 
imposed constrained. 
 

)(XFFitnessObjective =                       for maximization (3) 
)(XFFFitnessObjective −=

                for minimization (4) 
 
Where F  is a positive number which has to be large enough to exclude negative fitness values [1]. 
 
2.3 Population 
 
Rather than starting from a single point solution within the search space as for traditional methods, genetic 
algorithms are initialized with a population of solutions. For the successful application of a genetic algorithm, 
there must always be sufficient diversity in the population. Once the chromosomes in the population become 
similar to each other, no further evolution is possible. This phenomenon is called premature convergence. As 
the population size increases the genetic algorithm has a better chance of finding the best solution, but the 
computation cost also increases as a function of the population size [12]. A guideline for an appropriate 
population size is suggested by Goldberg [13]. The guideline for optimal population size depends on the 
individual chromosome length, which is valid up to 60 expressed as follows: 
 

lsizepopulation ∗∗= 21.0265.1  (5) 
 
As an example, for a string length of 18 bits, an optimal population size of 22 may be used. For this study, a 
randomly selected set of 26 strings is used as the starting population shown in Table 1. 

 
Table 1  Randomly chosen initial population. 
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2.4  Genetic Algorithm Operators 
 
The basic types of operators that are used in simple genetic algorithms include selection, crossover, and 
mutation. More complicated, specialized, and advanced operators include niching (fitness sharing) and 
reordering (inversion) [19]. Genetic operators are employed to recombine highly fit individuals and search 
the solution space for a better and better solution. These basic operators will be described in detail. More 
specialized and advanced operators including niching and reordering will also be described briefly in this 
section. 
 
2.4.1 Selection 
 
Genetic algorithms use a selection operator to select individuals from the population to insert into a mating 
pool. Individuals from the mating pool are used by a selection operator to generate new offspring, with the 
resulting offspring forming the basis of the next generation of solution. There are many different types of 
selection operators such as the Roulette-Wheel selection and tournament selection. The Roulette-Wheel 
selection, [1], chooses individuals through n , population size, simulated spins of roulette wheel. These 
solutions chosen randomly each with a probability proportionate to its relative fitness in the population. For a 
particular member, this probability of selection is calculated as the ratio of that member’s fitness to the sum 

of the fitness values for entire population. For the chromosome i  with fitness if , its selection probability 

iselectP
is determined by Goldberg [1]: 

 

∑
=

=
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.

1  (6) 
 
Each spinning, a single chromosome for the new population is selected. When selecting the 26 strings that 
will be placed in the mating pool, the wheel is spun 26 times, with the results indicating the string to be 
placed in the pool. Another selection method is tournament selection. In tournament selection, the most fit of 
each pair is selected to mate. Then the crossover operator takes place. 
 
A specialized selection mechanism that can be added to a genetic algorithm is elitism, which causes the most 
fit individual in a given generation to proceed unchanged into the following generation. This has the effect of 
guaranteeing a monotonically increasing maximum fitness for the population. It also guarantees the genetic 
algorithm will ultimately converge to the appropriate solution [6]. 
 
2.4.2 Crossover 
 
The crossover operator is the primary source of new candidate solutions in a genetic algorithm. It uses the 
mating pool as parents of the next generation. The main distinguishing feature of a genetic algorithm is the 
use of crossover, which consists of choosing randomly a pair of individuals among those selected previously 
and swap sub-strings between them with fixed probability. This operator provides the search mechanism that 
efficiently guides the evolution through the solution space towards the optimum. There are several popular 
crossover methods, including single-point crossover, multi-point crossover, and uniform crossover; for more 
information about these crossover operators reader is referred to Goldberg [1]. Single-crossover is the 
simplest form, which originally was used in genetic algorithms. Single-point crossover cuts two 
chromosomes in one point and splices the two halves to create new ones. In Figure 2, the strings, Parent I and 
Parent II, are selected for crossover and the genetic algorithm decides to mate them. The crossover point has 
been chosen at position 10 (10-18). The parent exchanges the sub-strings, which occurs around crossing point 
that is selected randomly. 
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Figure 2  Single-point crossover operator. 

 
The newly created strings are Child I and Child II. The cycle starts again with selection. This iterative 
process continues until specified criteria are met. In single-point crossover, the head and the tail of one 
chromosome cannot be passed together to the offspring. If both the head and the tail of a chromosome 
contain good genetic information, none of the offspring obtained directly with single-point crossover will 
share the two good features. Using a multi-point crossover avoids this drawback. The following is an 
example of multi-point crossover. In Figure 3, crossover points have been selected at position 10 (10-12) and 
16 (16-18). The parent exchanges the sub-string and form two new members, Child I and Child II, of the 
population. Multi-point crossover is generally considered better than a single-point crossover. However, 
researchers considered other crossover operators with more cut points such as uniform crossover.  
 

 
Figure 3  Multi-point crossover operator. 

 
In uniform crossover, every bit of each parent string has a chance of being exchanged with corresponding bit 
of the other parent string. The procedure is to obtain any combination of two parent strings from the mating 
pool at random and generate new Child strings from these parent strings by performing bit-by-bit crossover 
chosen according to a randomly generated crossover mask [14]. Where there is a 1 in the crossover mask, the 
Child bit is copied from the first parent string, and where there is a 0 in the mask, the Child bit is copied from  
the second parent string. The second Child string uses the opposite rule to the previous one as shown in 
Figure 4. For each pair of parent strings a new crossover mask is randomly generated. 
 

 
Figure 4  Uniform crossover. 
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2.4.3.Mutation 
 
Mutation is the process of randomly altering a part of an individual to produce a new individual. If only 
selection and crossover are implemented, the population will become uniform in several generations. 
Mutation’s primary role is to restore diversity that may be lost from the repeated application of selection and 
crossover and to prevent the genetic algorithm from premature convergence to a non-optimal solution. 
Genetic material can be lost, causing problems if, for instance, the entire population has 0’s in a position 
which requires a 1 for optimality. In Figure 5, the genetic algorithm selected to mutate bit position 11 in the 
binary string. The digit, 0, is changed to 1 or vice versa. Typically the probability of mutation is very small. 
Too high a mutation rate can be detrimental to genetic searches. This will degenerate the genetic algorithm 
into a random walk through the string space. Studies have shown that mutation probabilities greater than 0.05 
cause the search to become too random to be efficient [15, 16]. The mutation rate suggested by Bäck [17] is: 
 

lengthchromosomePsizepopulation mutation 11 <<   (7) 
 

 
Figure 5  Mutation operator. 

 
2.4.4 Other Operators 
 
Though selection, crossover, and mutation are used in most genetic algorithm applications, many other 
operators are used by researchers in genetic algorithms. These include fitness sharing (niching) and 
reordering (inversion). For detailed discussion of these operators the reader can refer to [4], [1], [18], [19], 
and [20]. 
 
The main goal of fitness sharing is to distribute the population over a number of different peaks in the search 
space. Fitness sharing, [19], is an approach by which an individual’s fitness is degraded by an amount related 
to the number of similar individuals in the population. 
  
Inversion is a reordering operator inspired by a similar operator in a biological process, [21], which seeks a 
superior representation of the coded solutions through reorganization of coding. The inversion operator 
inverts the order of the bit values between two randomly selected points on the parent chromosome. The 
principal mechanism of inversion can be seen in Figure 6. This operator has not, in general, been found to be 
practical in genetic algorithms application as it adds to the computational complexity of the process. 

 
Figure 6  An inversion process. 
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2.5 Convergence 
 
Convergence is the progression towards uniformity. A gene is said to have converged when 95% of the 
population share the same value [5]. Thus, most or all individuals in the population are identical or similar 
when population has converged. There are many different ways to determine when to stop running the 
genetic algorithm. One method is to stop after a preset number of generations or a time limit. Another is to 
stop after the genetic algorithm has converged.  
 
2.6 An Illustrative Example 
 
This section shows how the simple genetic algorithm optimization operates by employing an illustrative 
example. The problem presented is simply to find the maximum value of the following objective function 
over interval 0 - 25. Figure 7 shows the plots of the objective function versus design variable, X . 
 

250,)( 9 ≤≤= −− XeXF X
                                                                                      (8) 

 
In order to make things easy, it will be assumed that the maximum value of the objective function is between  

the design variable value of 0 and 25 (the actual value is )9=X . To solve this problem, the design variable, 
X , is constructed with the binary digits (0, 1) representation. The number of digits in the binary string, l , is 

estimated from Eq. (1). The design variable is represented and discretized to a precision of ε  (typically 
001.0=ε ). Based on the literature and trial cases, the parameters of the genetic algorithm for this study are 

chosen as follows: Chromosome length = 18, population size = 26, number of generation = 300, crossover 
probability = 0.5, mutation probability = 0.01. The illustrative example is solved using a computer code. The 
selection method used in the algorithm code is a tournament selection with a uniform crossover operator. 
 
Figure 8 shows the distribution of fitness function values in the first, 100th, 200th, and the last generation. 
Figure 9 shows the plots of crossover operator with different probability, (0.3, 0.5, and 0.9), for fitness 
function value in each generation as optimization proceeds. From the plots, it can be seen that the crossover 
probability, 0.5, performs better than the 0.3 and 0.9. Mutation probability of 0.001, 0.01, and 0.1 were tested 
for genetic algorithm performance. Figure 10 shows the result of fitness function obtained by three different 
mutation probabilities. It can be seen from Figure 10 that the mutation probability of 0.01 gives preferable 
results compared to 0.1 and 0.001. It should be noted that if a mutation rate of 0.001 is selected, many good 
strings are never evaluated. In the other hand if mutation rate of 0.1 is selected much random perturbation is 
happened. This causes the losing of parent resemblance and is disastrous for obtaining the optimum point.  
 
A complete generation history for the genetic algorithm run is given in Figure 11. Figure 11 shows the plot of 
the average and best fitness function values in each generation (population size of 26) as optimization 
proceeds. From the plot, the genetic algorithm optimizer makes rapid progress towards the maximum value 
of the function after generation 10 (about 260 evaluations of fitness function) and the fitness function has 
converged to a uniform solution with similar values through generations.  
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Figure 7   A plot of the objective function versus the design variable, 9)( −−= XeXF  
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From the results, it can be seen that genetic algorithms are capable of  finding the value of the design 

variable, 9=X , that maximize the objective function, 1)( =XF . 
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Figure 8   Convergence of the genetic algorithm through generations for objective function. 
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Figure 9   Effects of crossover probability on results for fitness function. 

Figure 10   Effects of mutation probability on results for fitness function. 
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3. CONCLUSIONS 
 
This paper gives an overview of the basics of genetic algorithms. All the different steps of the algorithm are 

outlined separately. It has been seen that genetic algorithms are very powerful tools. This algorithm is easy to 
produce and simple to understand. In the broadest sense, the genetic algorithm uses a couple of  steps to solve 
problems. Although many genetic algorithms have been designed by different researchers and all of them are 
very different from each other, they all process in following pattern: initializing a starting population of 
random chromosome, evaluating the population to see which individuals will contribute to the next 
generation, generating new chromosomes by mating current chromosomes, using the new population of 
chromosome to replace the old population, evaluating the new chromosomes and inserting them into the 
population, and repeating this process (except the initializing a starting population) until some termination 
criterion is satisfied. The interested reader should consult introductory literature such as [1], [6]and [22], and 
for more detailed applications coverage of the topic such as [16], [23], and [24]. 
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