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ABSTRACT 
 
This paper is an extension of our previous work “Optimal Commodity Procurement Under Stochastic Prices” 
published in this journal. In that article, we presented a new mode of analysis to inventory management systems 
when the unit-purchasing cost is allowed to be a general stochastic process.  We now develop an heuristic policy 
based on computationally efficient bounds of the optimal cost function.  A case study shows that the heuristic 
policy derived with our model saved approximately 25% of the maximum potential savings - the difference 
between the total inventory cost of forward buying when all the future prices are perfectly known and that of no 
forward buying.  Our results are intuitive and provide managerial insights for purchasing in a stochastic 
environment by showing the savings achievable when the nature of the unit cost is explicitly considered in 
procurement decisions.  
 
Key Words:  Forward buying; Case study; Stochastic prices; Inventory management; Procurement; Supply chain 
prices 
 

RASTSAL FİYAT ORTAMINDA ENVANTER ALIMI: OPERASYONEL POLİTİKA 
 
ÖZET 
 
Bu makale daha önce aynı dergide basılmış olan “Optimal Commodity Procurement under Stochastic Prices” adlı 
çalışmanın bir uzantısıdır. O çalışmamızda, birim sipariş maliyetleri rastsal olan envanter sistemlerinin analizine 
yeni bir analitik yaklaşım sunmuştuk. Bu çalışmada ise, optimal maliyet fonksiyonunun hesaplaması kolay alt ve 
üst limitlerini kullanan bir yaklaşık politika geliştirilmiştir. Örnek çalışmamızda, önceki modelimizden türetilen 
bu yaklaşık politika, maksimum potansiyel tasarrufun – gelecekteki bütün fiyatların bilindiği varsayıldığında, 
ileriye dönük satınalma politikasının uygulanması ile böyle bir politikanın uygulanmaması durumunda toplam 
envanter maliyetler arasındaki fark - yaklaşık 25% ini tasarruf etmiştir.  Bulduğumuz sonuçlar insan sağduyusuna 
hitap etmekte ve birim maliyetlerinin doğası açık bir şekilde satınalma kararlarına dahil edildiği zaman elde 
edilebilecek tasarrufları göstererek yöneticilerin rastsal ortamlarda satınalma fonksiyonunu daha iyi anlamalarına 
yardımcı olmaktadır. 
 
Anahtar Kelimeler: İleriye dönük satınalma, Örnek çalışma, Rastsal fiyatlar, Envanter yönetimi, Satınalma, 
ikame zinciri fiyatları 
 
1. INTRODUCTION 
 
In our previous work “Optimal Commodity Procurement Under Stochastic Prices,” we studied a forward buying 
decision that can be classified as an inventory procurement problem under stochastic prices.  It was motivated by 
an application involving the procurement of raw materials by a firm.  The firm needed a systematic means of 
trading off critical cost and risk factors, such as the dynamics of future unit prices, inventory costs, and 
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projections of upcoming production requirements.  The work report here is a development of an operational 
policy incorporating stochastic prices into periodic review inventory replenishment. We finally demonstrate our 
findings on a case study. 
 
2. PROCUREMENT MODEL AND ITS BOUNDS 
 
In this section, we review the procurement model and some definitions of functions.  We consider a single item, 
infinite horizon, stochastic price and deterministic demand commodity procurement problem.  The ordering price 
per unit follows a nonnegative discrete time stochastic process.  Constant lead-time, constant discount rate, and 
no fixed ordering cost are assumed.  No backlogging is allowed.  The procurement decision is made at discrete 
points in time and the procurement cost is incurred when an order is placed.  The sequence of events for 
inventory control at each period is as described in our earlier work. For ease of reading, the notation used is 
reproduced below: 
t  = Period index 
h = Holding cost per unit per period 
IPt = Inventory position in period t 
L = Lead time 
Qt = Quantity ordered in period t 
α = Discount rate 

tz  = Realized price in period t 

it,tz +  = Forecast made in period t for period t+i 

tu  = Forecast error in period t based on forecast made in period t-1 

tD  = Demand in period t 

nH  = Cumulative discounted carrying costs, defined as: 

nH hhh 1nL1LL −++ α++α+α= Λ
α−
α−

α=
1

1h
n

L  

][E t ⋅  = Expectation conditional on information known at time t 
 
The procurement decision can be visualized as comparing the cost of buying now versus a nested expectation of 
minimums of discounted future costs.  For example, the optimal decision is to buy in period t for period t+L+3 if 
 

3t Hz + ])])]z[E,Hz[min(E,Hz[min(E 3t2t12t1t21tt +++++ α+α+α< , 
otherwise, wait. 
In general, 

=n,tR )]R,Hz[min(E 1n,1t1n1tt −+−+ +α , 1t ≥ , 1n ≥ . 
Then, the optimal decision is to buy in period t for period nLt ++ if the expected savings  

 HzR   S ntn,tn,t −−=  
is positive.  A lower bound that gives minimum quantity to buy is  

, )Hz(minEL init
1i

ni1tn,t ⎥⎦
⎤

⎢⎣
⎡ +αα= −+

−

≤≤
1t ≥ , 1n ≥ . 

The minimum expected savings function is given as:  
Min

n,tS ntn,t HzL −−= .   

Then, Min
n,tS provides a lower bound for n,tS .  An  upper bound for n,tS  is given by  

{ })H]z[E(minU initt
1i

ni1n,t −+
−

≤≤
+αα= 1n ≥ . 

And finally the maximum expected savings function, Max
n,tS  is given as 

Max
n,tS ntn,t HzU −−= . 
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As the important definitions in our previous work have been reviewed, let us derive our new policy, namely 
operational policy. 
 
3. OPERATIONAL ORDERING POLICY  
 

Min
n,tS  and Max

n,tS  are used to compute the maximum and minimum number of periods to forward buy, Min
tk  and 

Max
tk .  In the case study, it was found that Max

tk  could be more than three times as large as Min
tk .  To be 

operational, we have to choose a value for tk  from the set { }Max
t

Min
t

Min
t k,...,1k,k + .  For  , 10 ≤β≤  let us define 

the β-expected cost function,  

⎥⎦
⎤

⎢⎣
⎡ +β−+βαα=β −++

−

≤≤
)H]z[E)1(z(min E)(C inittit

1i

ni1tn,t  for 1n,1t   ≥≥∀ . 

(.)C n,t  has both upper bound and lower bound characteristics.  Proposition 1 shows that the )(C n,t β  non-
increasing in β; for which the following lemma and its corollary is used. 
 
Lemma 1:  For any random variables n21 X,,X,X Λ  and n21 Y,,Y,Y Λ ,  
 

{ } { }≤+ n21n21 Y,,Y,YminX,,X,Xmin ΛΛ { }. YXmin ji
nj1
ni1

+
≤≤
≤≤

 

Proof:  It is easy to see that the left hand side is less than or equal to the sum of any given pair ji YX + , 

{ }n,,2,1j,i Λ∈∀  and hence, less than or equal to the minimum of all such pairs.           
The following corollary follows from Lemma 1. 
 
Corollary 1:  For any random variables n21 X,,X,X Λ  and n21 Y,,Y,Y Λ ,  
 

{ } { }≤+ n21n21 Y,,Y,YminX,,X,Xmin ΛΛ { }nn2211 YX,,YX,YXmin +++ Λ . 
 
Proposition 1:  )(C n,t β  monotonically decreases in 10 ≤β≤  for 1n,1t   ≥≥∀ . 
 
Proof:  Without loss of generality, assume 10 21 ≤β≤β≤ .  Then 

)(C)(C 1n,t2n,t β−β ⎥⎦
⎤

⎢⎣
⎡ +β−+βαα= −++

−

≤≤
)H]z[E)1(z(min E initt2it2

1i

ni1t  

⎥⎦
⎤

⎢⎣
⎡ +β−+βαα− −++

−

≤≤
)H]z[E)1(z(min E initt1it1

1i

ni1t  

( )⎢⎣
⎡ +β−+βαα= −++

−

≤≤
initt2it2

1i

ni1t H]z[E)1(zminE   

( )⎥⎦
⎤+β−+βα−+ −++

−

≤≤
initt1it1

1i

ni1
H]z[E)1(zmin  

( ){ }⎥⎦
⎤

⎢⎣
⎡ +β−+β−+β−+βαα≤ −++−++

−

≤≤
initt1it1initt2it2

1i

ni1t H]z[E)1(zH]z[E)1(zminE        (by Corollary 1) 

{ }⎥⎦
⎤

⎢⎣
⎡ β−β+β−βαα= ++

−

≤≤
]z[E)(z)(minE itt21it12

1i

ni1t  

{ }⎥⎦
⎤

⎢⎣
⎡ −αβ−βα= ++

−

≤≤
]z[EzminE)( ittit

1i

ni1t12  since the expectation of a minimum is less than or equal to the 

minimum of the expectations, 

[ ]]z[EzEmin)( ittitt
1i

ni112 ++
−

≤≤
−αβ−βα≤ 0=  
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Since 21 β≤β  are arbitrarily chosen on [0,1], the result follows                
Next proposition establishes that )(C n,t β  is bounded above by n,tU  and below by n,tL .  
 
Proposition 2:  n,tn,tn,t U)(CL ≤β≤  for 10 ≤β≤  and 1n,1t   ≥≥∀ . 
 
Proof:  Notice that for 0=β  and 1n,1t   ≥≥∀ , 

)0(C n,t ( )⎥⎦
⎤

⎢⎣
⎡ +αα= −+

−

≤≤
initt

1i

ni1t H]z[EminE since all the terms are constants, 

( )initt
1i

ni1
H]z[Emin −+

−

≤≤
+αα= n,tU≡ . 

Also, for 1=β  and 1n,1t   ≥≥∀ , 

)1(C n,t ⎥⎦
⎤

⎢⎣
⎡ +αα= −+

−

≤≤
)Hz(min E init

1i

ni1t n,tL≡ . 

Then, the result follows by using Proposition 1               
As in previous sections, let us define the β-expected savings function, )(S n,t β , as follows: 

)(S n,t β ntn,t Hz)(C −−β= , 1n,1t   ≥≥∀ . 

)(S n,t β  is non-increasing in n just as n,tS , Min
n,tS , and Max

n,tS . 
 
Proposition 3: )(S)(S 1n,tn,t β≥β +  for 10 ≤β≤  and 1n,1t   ≥≥∀ . 
 
Proof:  Follows the same line of reasoning as in Proposition 3 in Güzel (2004) if itz +  is replaced by 

]z[E)1(z ittit ++ β−+β                   

Next proposition shows )(S n,t β  also takes the same limiting value as n,tS , Min
n,tS , and Max

n,tS .   
 
Proposition 4:  Suppose t  0]z[E  lim ntt

n
n

∀=α +
∞→

 for 10 <α≤ .  Then  

 
)H(z )(Slim tn,tn ∞

∞→
+−=β  t∀ . 

Proof:  Immediately follows from Proposition 7 in Güzel (2004) since prices are nonnegative and 
0 n,tn,t U)(C ≤β≤  t,n ∀∀                   
Now, we can define the operational policy to follow in deciding how much to procure each period, if any.  
Specifically, if 0)(S 1,t ≤β , then the operational number of periods to forward buy, )(k t β , is zero.  Otherwise, 

)(k t β  is the unique integer such that 0)(S )(k,t t
>ββ  but 0)(S 1)(k,t t

≤β+β .  Furthermore, the operational order 
quantity, 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=β ∑
β++

=
0 , IPDmax)(Q t

)(kLt

ti
it

t

 

where IPt is on-hand plus on-order inventory in period t. 
Propositions 3 and 4 guarantee that )(k t β , if exists, is unique.  If the assumption of Proposition 4 does not hold, 
then it is possible that ∞=β)(k t .  The next proposition shows that the order quantity based on )(C n,t β , lies 
within the interval that bounds the optimal order quantity.  
 
Proposition 5: Max

tt
Min
t Q)(QQ ≤β≤  for 1t ≥∀ , 10 ≤β≤ . 

 
Proof:   )(SS0 Min

t
Min
t k,t

Min
k,t β≤≤ ⇒ )(kk t

Min
t β≤ , and 
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0S)(S Max
1k,t1k,t Max

t
Max
t

≤≤β ++
 ⇒ )(kk t

Max
t β≥                        

 
In order to identify the specific procurement quantity, it remains to find [ ]1,0* ∈β  such that )(C *

n,t β  best 
approximates the n,tR .  We estimate β* by computing the total inventory costs for a number of β values using 
sample paths generated from the price model and then fitting a quadratic polynomial function to the total costs.  
The first order condition for a minimum of the polynomial determines an estimate for β*.  We chose the sample 
path and response surface methodology since the range of β is small and the development time is shorter.  The 
next section presents this approach and evaluates the above policies. 
 
4. CASE STUDY 
 
We have tested the operational as well as the upper and lower bound policies using a specific commodity, kiln-
dried 2x8-16 foot framing lumber, with a recent 5 year history of weekly prices.  An ARIMA(2,1,{2,11}) model 
that is two autoregressive terms with lags 1 and 2, two moving average terms with lags 2 and 11, and a first 
differencing, was selected as the best fit for this data set.  Using the price models of each year (1996, 1997, …, 
2001), 20 historical samples of length 50 are generated.  For each historical sample, the inventory ordering 
decisions are simulated along the sample by observing prices one period at a time.  Ct,n(β) is estimated using the 
20 observations and is then used to determine )(k t β  at each period t of the historical sample.  Note that different 
price models are allowed for different years and the price model at the end of each year has been fit using prices 
only up to the end of that year.   
 
The physical holding cost, which excludes opportunity cost of capital, is assumed to be one dollar per unit per 
week for this illustration.  The cost of capital invested in inventory is 15%.  For brevity, a zero lead-time is 
assumed, but the extension to include a constant non-zero lead-time is straightforward.   
 
In order to explore the quality of the solution procedure, we compare the total cost resulting from the 
procurement policy for this bench item as generated by the solution methodology with two benchmark policies.  
Specifically, we compare our costs with these resulting from procurements made under perfect information (i.e., 
prices are known at the beginning of the simulation period), by following a myopic buying policy (i.e., purchase 
each period; one period’s worth of demand).  In each case, the cost per unit per period is computed by taking the 
average of each of these costs calculated over all historical samples for all years.  These two benchmark costs are 
used to represent the extremes – perfect information would lead to a minimum cost procurement schedule, 
whereas a myopic policy provides a “you should be able to do at least as good as this” maximum cost.  The 
“Percentage Saved” by using the optimal policy is computed as: 
 

 100*
unitper  Cost Perfectunitper  Cost Myopic
unitper  Cost Modelunitper Cost  Myopic

−
− . 

 
Figure 1 plots the model cost as a function of β and fitted quadratic 
polynomial function where goodness of fit is summarized by the R2 
value.  Because of the frequent use of quadratic response functions for 
relatively flat output variables in the simulation literature, we do not 
consider other types of response functions.  Notice that Y-axis scale 
exaggerates the differences of cost function across beta values.  On an 
actual scale that includes zero, this function would look very flat.  We 
evaluated the operational policy for ten different β values.  As shown 
in this figure, the measure of the goodness of fit is high, which means 
the model costs of generated “historical” sample paths for all years is 
well approximated by this polynomial function.  By the first order 
condition on the response function, we estimate the minimum of the 
model cost per unit to be at 6098.0* =β . 

Model Unit Cost per Period 

y = 8.0247x2 - 9.7875x 
+ 402.95

R2 = 0.973

399,00
400,00
401,00
402,00
403,00
404,00

0 0,5 1
β

 
Figure 1. Quadratic Fit 
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4.1. POLICY EVALUATIONS 
 
Using the β*, we now simulate the inventory system using the actual prices to compare/evaluate the policies.  We 
use the price model fitted from the prices of the previous years to simulate the inventory procurement decisions 
as new prices are observed.  We update the price model at the end of each year.  Note that if the price model is 
actually updated at each period as new prices are observed, the model may perform better and produce larger 
savings.  However, this may result in model instability.  A good price model is expected to be stable for some  
 
period of time and will require fewer updates.  At the end of this section, we discuss some experimental results 
with fewer price model updates.  However, since our inventory procurement model is price model independent, 
the update frequency is left to the user.   
 
Figure 2 shows actual prices plotted on the left Y-axis while inventory position, corresponding to 
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Figure 2.  Evaluation of operational policy 
 

β = 0.6098, for years 1997 – 2001 is plotted on the right Y-axis.  Table 1 summarizes the average unit cost on a 
yearly basis, also the overall average for upper/lower bound, and operational policies (�=0, 1, 0.6098 
respectively) as well as myopic and perfect information case.   
 

Table 1. Policy Evaluations, $/1000Bdft-Week 
 

Years 1997 1998 1999 2000 2001 Average 

Perfect 463.90 376.61 441.27 374.39 331.56 389.15 
Myopic 470.57 408.48 460.54 379.93 371.97 418.48 

 β=0 475.79 407.16 462.03 372.26 364.44 416.30 

 β=1 468.87 403.66 456.46 378.94 353.27 412.16 Model 

 β=0.6098 469.39 402.50 459.91 379.84 346.11 411.27 
 

The operational policy saved 
Myopic – Operational Policy = $418.48 – $411.27 = $7.21 per 1000 BdFt/week out of maximum potential 
savings of  
Myopic – Perfect = $418.48 – $389.15 = $29.33.  
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Hence, use of the model resulted in purchases that achieved a 24.58% of the maximum potential savings.  
Typically, a medium sized manufactured homes firm uses approximately 135 thousand Bdft of 2X8-16 foot per 
week.  This means that the operational policy saved 135*7.21*52 = $50,614 per year over the myopic policy on 
the average during the five year period. 
 
Notably, for this particular price data set, the operational policy saved $5.03 per 1000 Bdft/week ($416.30 – 
$411.27) more than the upper bound policy and $0.89 ($412.16 – $411.27) more than the lower bound policy.  
These results are in agreement with Figure 2 where the upper bound policy performed the worst and the 
operational policy slightly better than the lower bound policy.  We should also mention that a better price model, 
if there were any, would possibly result in more savings. 
 
Figure 3 shows the end of period inventory positions for all the policies under consideration.  The upper bound 
policy consistently buys more than the others and the operational policy buys somewhere in between the upper 
and lower bound policies. 
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Figure 3.  End of period inventory positions under the policies 
 

As mentioned at the beginning of this section, we also evaluated the policies with fewer or no price model 
updates.  We applied the initial, first year price model (i.e., for 1996) ARIMA(2,1,{2}), to the rest of the years 
without refitting.  All of the polices performed relatively poorly compared to this base case as discussed above 
where the price model is refitted every year.  Then, we kept the first year’s model the same and applied 
ARIMA(2,1,{2,11}) to the rest of the years while fitting only once at the end of the second year.  This resulted in 
slightly better results for all the policies compared to the base case.  This result is reasonable since the price 
model parameters are stable after the second year as shown in Figure 4.  We conclude that, for this particular 
price history and its model, refitting the model after the second year may not be needed.  Finally, the performance 
of the policies using a covariance stationary price model, ARMA(1,4), is investigated while refitting this model at 
the end of each year.  All of the policies performed better compared to the results for the nonstationary 
ARIMA(2,1,{2,11}) price model considered above.  This result supports the mean-reverting behavior of prices 
reported in commodity literature. Although the classical time series methodology favored the nonstationary 
model, the covariance stationary price model resulted in better performance in terms of the expected costs of the 
policies.  A more involved price model development scheme that includes expected policy cost as an additional 
model selection criterion may be desirable.  We leave this extension to future research. 
 



 Inventory Procurement Under Stochastic Prices An Operational Policy 

 

68 

 

Parameter Estimates
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Figure 4.  ARIMA(2,1,{2,11}) parameter estimates at the end of each year 
 
Given β*, one makes the procurement decision by utilizing the last updated price model and the most recent data 
and disturbances from model fitting to obtain the operational number of periods to forward buy, )(k t β .  
 
As a final note on this section, we simply state that Max

n,tS  is insensitive to underlying noise level (i.e., the 2σ , the 

variance of the residuals from the price model fit) since Max
n,tS  is based on a minimum of price forecasts and these 

forecasts are obtained by setting all future disturbances to their mean values.  On the other hand, Min
n,tS  is very 

sensitive to the underlying noise level of the price model since it is based on the expectation at time t of the 
minimum of random future prices.  As 2σ  approaches zero, Min

n,tS  approaches to Max
n,tS  resulting in tighter 

bounds.  As 2σ  gets larger, Min
n,tS  moves away from Max

n,tS , hence the bounds become loose.  Also, as ∞→σ2 , 

1n  SMin
n,t >∀−∞→ .  In this case, the lower bound policy effectively becomes a myopic policy and results in 

forward buying of one period at the most.  Since, the underlying noise of the price model is data driven and not a 
control variable, we do not attempt to prove these observations formally. 

 
5. EXTENSION TO SUPPLY CHAIN CONTRACTS 
 
Our model can also be used in a supply chains context.  Manufacturing firms who buy commodities from 
suppliers can use an extension of our model in negotiating commodity contracts.  In these contracts, parties 
mainly negotiate prices of commodities such as lumber, steel, core metals, etc. so that the manufacturer has a 
reliable source for raw materials at a fixed price over the duration of the contract.  Let U(.) be the manufacturer’s 
utility function and 

 
C~ = total cost (a random variable) incurred by the manufacturer over the contract 

duration, T, if the supplier’s offer is not accepted. 
 
Then, the manufacturer chooses the contract price, p , if 

[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
> ∑

=

T

1t
tDpU)C~(UE  
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where ∑
=

T

1t
tD is the total requirements over T periods.  Since utility functions are monotonic, we can solve this 

inequality to obtain the break-even contract price, 

∑
=

− ⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡

= T

1t
t

1

D

U
p

)C~(UE
. 

After some slight modifications, our model can be used to compute the only unknown quantity, the expected 
utility of not accepting the supplier’s offer, 

[ ]
N

)C(U
)C~(UE

N

1i
i∑

==  

where  N is the number of sample paths generated and iC  is the total cost on the sample path i. 
 
6. CONCLUSION  
 
This paper has investigated the forward buying problem in a stochastic price environment.  Although some 
simplifying assumptions are made concerning the inventory procurement problem, we have allowed prices to be 
any general stochastic process.  We have developed an operational policy for such an inventory system.  We have 
applied these policies on the actual prices in a case study and showed that the operational policy outperformed the 
upper bound and lower bound policies while all of the policies outperformed the myopic policy. 
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